Оплата        07.08.2019   

Технология дисплея смартфона. Сравнение OLED и IPS экранов

Современный рынок мобильных устройств переполнен количеством разнообразных изделий, что отличаются друг от друга на аппаратном или программном уровне. Если на заре телефонии мобильные подбирались преимущественно по принципу лучшего дизайна, то у большинства сегодняшних смартфонов, как минимум, схожий внешний вид и достаточная оригинальность. В связи с этим выбор делается в пользу эксплуатационных и функциональных особенностей.

Обратите внимание

Один из важных критериев выбора ставит перед покупателем вопрос о том, какой экран лучше для смартфона и насколько он будет удобен в использовании. Далее в статье детальнее рассмотрены физико-технические характеристики типовых дисплеев с доступным и понятным анализом, что упростит выбор смартфона по данному критерию.

Разновидности дисплеев (матриц)

На сегодняшний день широкую популярность приобрели следующие функциональные типы матриц:

  • TN+film (далее TN);
  • AMOLED.

Первые два типа привычно называть жидкокристаллическими (ЖК), поскольку они работают на базе жидких кристаллов. Что касается AMOLED, то это технология, структурно состоящая из органических светодиодов (OLED).

Важно знать

Очень часто в различных обзорах присутствует информация о TFT-матрицах. Изначально сравнение TFT-технологии (thin-film transistor) с любой из вышеперечисленных является неверным. TFT – это основа для разработки других технологий.

Теперь при рассмотрении того, какая технология экрана смартфона лучше, можно говорить, что в любом случае рассматриваются TFT-дисплеи. Ранее при их изготовлении задействовали аморфный кремний, но при обновлении технологий производители пришли к использованию поликристаллического материала (LTPS-TFT). Ключевые преимущества:

  • снижение энергопотребления;
  • минимизация физических размеров отдельных элементов;
  • увеличение параметра плотности пикселей (ppi – количество пикселей на дюйм дисплея).

Чтобы понять, какой экран смартфона лучше – IPS или AMOLED, а также чтобы учесть их ключевые отличия от дисплеев, созданных по технологии TN, необходимо детальнее рассмотреть каждый из видов.

ЖК дисплеи (LCD)

Независимо от того, какая именно из матриц (TN или IPS) рассматривается, принцип действия у LCD-дисплеев идентичен:

  • в молекулы жидких кристаллов подаётся ток;
  • его сила влияет на яркость субпикселей;
  • излучаемый свет проходит через светофильтры, что позволяет окрасить волну в определенный цвет.

Обратите внимание

Оценка того, какой экран лучше для смартфона, выполняется в соответствии с современными реалиями производства по данному направлению.

TN+film

По какой технологии изготовлен дисплей Вашего смартфона?

Матрица TN стала началом истории ЖК-дисплеев. Она обладает простейшими техническими характеристиками:

  • малые углы обзора, не превышающий 60° от вертикального взгляда на плоскость экрана, с инвертированием изображения при незначительных отклонениях;
  • недостаточная контрастность;
  • плохая цветопередача.

Важно знать

Свою актуальность данная технология потеряла, хотя и продолжает использоваться в наиболее бюджетных моделях девайсов.

IPS

Более двух десятилетий назад была представлена новая технология IPS. По сей день её регулярно модифицируют с целью улучшения и оптимизации. Популярными являются дисплеи на базе AH-IPS (производитель LG) и PLS (производитель ).

Обратите внимание

Указанные версии модификации так схожи между собой, что между компаниями началось судебное разбирательство.

Если не вдаваться в детали вопроса, какая технология экрана смартфона лучше и почему, можно выделить следующие возможные (достигаются при максимальной оптимизации технологии) качественные характеристики современных IPS-матриц:

  • широкие углы обзора (значение близится к 180°) с минимумом искажений даже при самом сильном отклонении;
  • высококачественная цветопередача;
  • повышенная плотность пикселей, увеличиваемая с каждой новой (улучшенной) модификацией.

Производители редко делятся сведениями об особенностях IPS-матрицы, установленной в их продукте. Однако различия между дисплеями из разных ценовых категорий можно увидеть невооруженным взглядом, а потому пользователь обязан знать, какой тип экрана смартфона лучше.
Самые дешевые IPS-матрицы обладают следующими недостатками:

  • картинка выцветает при наклоне экрана;
  • точность цветопередачи в целом не оптимальна: может прослеживаться «блёклость» или «кислотность».

Важно знать

OLED-технология

Однозначно выигрывает любую конкуренцию в вопросе того, какая технология экрана смартфона лучше, AMOLED-матрица. Данный тип дисплея строится на технологии OLED, подразумевающей использование органических светодиодов. Первым «победным» качественным отличием таких экранов можно считать отсутствие необходимости в подсветке пикселей. Благодаря этому функциональные элементы уменьшаются в размерах, толщина матрицы минимизируется. Однако это не единственный аргумент в споре о том, какой экран смартфона лучше – IPS или AMOLED.

Обратите внимание

В любом случае технология AMOLED-дисплея строится на базе TFT, поскольку её сочетание с OLED позволяет осуществлять индивидуальное управление над каждым из субпикселей. Благодаря такой особенности можно полностью отключать субпиксели, передавая максимально глубокий черный цвет.

Среди значимых преимуществ над дисплеями IPS стоит отметить уменьшенную цветопередачу, что реализуется именно за счет вышеописанной возможности отключения субпикселей. При задействовании темных цветов в оформлении интерфейса смартфона потребление заряда снижается в несколько раз.

Другое качественное преимущество сразу же стало функциональной проблемой. В процессе эксплуатации самых первых AMOLED-матриц была замечена чрезмерная насыщенность цветов, которая не являлась естественной. Проблему производители быстро решили, но даже сегодня существуют смартфоны, в которых приходится выполнять ручную настройку насыщенности, чтобы сделать цветопередачу более естественной (ближе к той, что выдают IPS-дисплеи).

Важно знать

Существует у AMOLED-технологии и ограничение, связанное с функционалом отдельных элементов, тех самых органических светодиодов. В зависимости от того, какие цвета чаще воспроизводятся каждым из них, возникают перепады в предельном сроке службы таких элементов. К примеру, в районе интерфейсной панели уведомлений такие светодиоды выгорают быстрее, сохраняя за собой остаточное изображение. Правда, и эту проблему производители решили, увеличив минимальный срок службы элемента до 3 лет (речь о времени беспрерывной активности).

По итогам всего вышесказанного, можно сделать ряд выводов:

  • высочайшее качество обеспечивает OLED-технология;
  • продолжает развиваться и является наиболее актуальной с точки зрения показателей «цена-качество» IPS-технология;
  • морально устарела и не способна к конкуренции – TN+film.

Естественно, за пользователем остаётся право выбора, но ключевые аргументы можно подчеркнуть из данного материала. Далее будут представлены сведения о нескольких смешных особенностях современных дисплеев и перспективах развития данной сферы производства, что позволит полностью осознать, какой тип экранов смартфонов лучше.

Прочие критерии выбора экрана

Не только технология, по которой изготовлена матрица, влияет на общий уровень восприятия изображения. Рисунок субпикселей – еще один важный параметр. Каждый производитель модифицирует и эту сторону технологии. В ходе многочисленных переработок и обновлений технологии производители получали самые разные рисунки с видимыми преимуществами и недостатками.

Обратите внимание

Учитывая технологическую сложность данного вопроса, пользователь, выбирая, какой тип экранов смартфонов лучше, должен ориентироваться на то, что плотность пикселей ниже 300 ppi является слишком маленькой. Чем больше значение, тем сильнее картинка сглаживается, исключая любые возможные дефекты.

Также выбирать, какой экран лучше для смартфона, стоит на основании следующих смежных параметров:

  • Отсутствие воздушной прослойки между сенсором и дисплеем. Максимально увеличивается яркость и углы обзора, а также улучшается цветопередача. Естественно, уменьшается общая толщина всей системы передачи изображения (лучше всего получается у Samsung). Проблема: сложность замены модуля.
  • Форма дисплея. Началось всё с появления 2,5D-стёкол – загнутых по краям. Передаваемое изображения кажется безграничным, что усиливает ощущения зрительного аппарата пользователя. В современных модификациях речь идёт уже о загибании всего модули вместе с сенсором – безрамочная технология.
  • Усиленная чувствительно сенсора. Лучшие вариации позволяют работать со смартфоном не только рукой. Когда доступ к интерфейсу устройства возможен даже в перчатках, вопрос о том, какой экран лучше для смартфона, кажется нецелесообразным.
  • Разрешение дисплея. Данный параметр указывает на количество пикселей относительно реальных физических размеров дисплея. Его можно ассоциировать с плотностью пикселей в процессе выбора, если исходных данных о конкретной модели меньше, чем нужно для аргументированного её приобретения. В данном случае всё просто: «Какое разрешение экрана лучше для смартфона?» – «Наибольшее».
  • Размер диагонали. Данный показатель не должен быть в приоритете над разрешением и плотностью пикселей, поскольку его доминация над указанными параметрами может привести к возникновению видимых дефектов. С эксплуатационной точки зрения, чем больше дисплей, тем сложнее его использовать одной рукой. На сегодняшний день это самая дорогостоящая технология с максимально возможными из доступных на рынке качеств.

    Говоря о том, какое разрешение экрана лучше для смартфона, естественно, можно отдавать однозначное предпочтение в пользу QLED. Дисплеи, созданные по этой технологии, уже давно имеют разрешение ULTRA HD и отмечаются всеми возможными преимуществами. Однако среднестатистический пользователь будет ориентироваться на ценовые показатели, а потому лучше придерживаться ранее данных советов относительно плотности пикселей и прочих параметров дисплея.

К 2018 году соперничество между экранными технологиями свелось к тому, что на рынке осталось всего два достойных варианта. TN матрицы были вытеснены, VA в мобильных аппаратах не использовались, а чего-то нового еще не придумали. Поэтому конкуренция развернулась между IPS и AMOLED. Тут стоит напомнить, что IPS, LCD LTPS, PLS, SFT – это то же самое, как и OLED, Super AMOLED, P-OLED и т.д. являются лишь разновидностями светодиодной технологии.

На тему того, что же лучше, IPS или AMOLED, . Но технологии не стоят на месте, поэтому в 2018 году не будет лишним внести коррективы и сделать разбор с учетом сегодняшних реалий. Ведь оба типа матриц постоянно совершенствуются, избавляются некоторых недостатков или эти минусы становятся менее существенными.

Что лучше для смартфона, IPS или AMOLED, сейчас попробуем выяснить. Для этого взвесим все плюсы и минусы каждой из технологий, чтобы по перевесу сильных сторон выявить абсолютного лидера или, с учетом специфики, решить, что лучше в конкретных условиях.

Плюсы и минусы IPS дисплеев

Разработка и совершенствование IPS дисплеев длится уже два десятилетия, и за это время технология успела обзавестись рядом плюсов.

Преимущества матриц IPS

IPS матрицы являются лучшими среди всех типов ЖК-панелей благодаря ряду достоинств.

  • Доступность . За годы развития технологию массово освоили многие компании, сделав массовый выпуск экранов IPS недорогим. Стоимость экрана для смартфона с разрешением FullHD сейчас стартует с отметки около $10. Благодаря низкой цене такие экраны делают смартфоны более доступными.
  • Цветопередача . Хорошо откалиброванный IPS экран передает цвета с максимальной точностью. Именно поэтому профессиональные мониторы для дизайнеров, графиков, фотографов и т. д. выпускаются на IPS матрицах. Они обладают наибольшим охватом оттенков, что позволяет получить на экране реалистичные цвета объектов.
  • Фиксированное энергопотребление . Жидкие кристаллы, формирующие картинку на IPS экране, почти не потребляют ток, основным потребителем являются диоды подсветки. Поэтому расход энергии не зависит от изображения на дисплее и определяется уровнем подсветки. Благодаря фиксированному расходу энергии IPS экраны обеспечивают примерно одинаковую автономность при просмотре фильмов, веб-серфинге, письменном общении и т.д.
  • Долговечность . Жидкие кристаллы почти не подвержены процессу старения и износа, поэтому в плане надежности IPS лучше, чем AMOLED. Деградировать могут светодиоды подсветки, но срок службы таких LED весьма велик (десятки тысяч часов), поэтому даже за 5 лет экран почти не теряет в яркости.

Недостатки IPS матриц

Несмотря на весомые плюсы, есть у IPS и минусы. Эти недостатки являются фундаментальными, поэтому путем совершенствования технологии они не устраняются.

  • Проблема чистоты черного цвета . Жидкие кристаллы, которые отображают черный цвет, блокируют свет от подсветки не на 100%. Но так как подсветка IPS экрана общая для всей матрицы, ее яркость не снижается, панель остается подсвеченной, в итоге черный цвет получается не очень глубокий.

  • Низкая контрастность . Уровень контрастности ЖК-матриц (примерно 1:1000) приемлем для комфортного восприятия картинки, но по этому показателю AMOLED лучше IPS. Из-за того, что черный не очень глубокий, разница между самым ярким и самым темным пикселем у таких экранов заметно меньше, чем у светодиодных матриц.
  • Большое время отклика . Скорость реакции пикселей у IPS панелей невысока, порядка десятка миллисекунд. Этого хватает для нормального восприятия картинки при чтении или просмотре видео, но маловато для VR-контента и других требовательных задач.

Плюсы и минусы дисплеев AMOLED

В основе технологии OLED лежит использование массива миниатюрных светодиодов, расположенных на матрице. Они независимы, поэтому предлагают ряд преимуществ над IPS, но не лишены и минусов.

Преимущества AMOLED матриц

Технология AMOLED новее, чем IPS, и ее создатели позаботились об устранении минусов, характерных для ЖК-дисплеев.

  • Раздельное свечение пикселей . В AMOLED экранах каждый пиксель сам является источником света и управляется системой независимо от других. При отображении черного цвета он не светится, а при показе смешанных оттенков может выдавать повышенную яркость. За счет этого AMOLED экраны демонстрируют лучшую контрастность и глубину черного.

  • Почти мгновенная реакция . Скорость отклика пикселей на светодиодной матрице на порядки выше, чем у IPS. Такие панели способны отображать динамичную картинку с высокой частотой смены кадров, делая ее более гладкой. Эта возможность – плюс в играх и при взаимодействии с VR.
  • Сниженное потребление энергии при показе темных тонов . Каждый пиксель матрицы AMOLED светится независимо. Чем светлее его цвет – тем ярче пиксель, поэтому при показе темных тонов такие экраны потребляют меньше энергии, чем IPS. А вот в процессе отображения белого AMOLED панели демонстрируют схожий, или даже больший, чем у IPS, расход заряда батареи.
  • Малая толщина . Так как у AMOLED матриц нет слоя, рассеивающего свет подсветки на жидкие кристаллы, такие дисплеи имеют меньшую толщину. Это позволяет уменьшить габариты смартфона, сохранив его надежность и не жертвуя емкостью аккумулятора. Кроме того, в перспективе возможно создание гибких (а не только изогнутых) матриц AMOLED. Для IPS это невозможно.

Недостатки AMOLED-матриц

Свойственны AMOLED-матрицам и недостатки, причем виновник большинства бед один. Это – синие светодиоды. Освоение их производства дается сложнее, а по качеству они уступают зеленым и красным.

  • Синева или ШИМ . Выбирая смартфон с AMOLED экраном, приходится выбирать между широтно-импульсной регулировкой яркости и голубизной светлых тонов. Все из-за того, что при непрерывном свечении синие субпиксели воспринимаются сильнее, чем красные и зеленые. Исправить это можно с помощью использования ШИМ-регулировки яркости, но тогда всплывает другой недостаток. На максимальной яркости экрана ШИМ нет или частота регулировки достигает около 250 Гц. Этот показатель находится на границе восприятия и почти не влияет на глаза. А вот при снижении уровня подсветки – снижается и частота ШИМ, в итоге на низких уровнях мерцания с частотой около 60 Гц могут приводить к усталости глаз.
  • Выгорание синего . Тут тоже проблема в синих диодах. Их срок службы меньше, чем зеленых и красных, поэтому со временем возможно искажение цветопередачи. Экран уходит в желтизну, баланс белого сдвигается в сторону теплых тонов, общая цветопередача ухудшается.
  • Эффект памяти . Так как миниатюрные светодиоды склонны к выгоранию, места на экране, которые отображали яркую статичную картинку (например, часы или индикатор сети светлого цвета), со временем могут терять яркость. В результате даже если элемент не отображается, в этих местах виднеется силуэт этого элемента.

  • PenTile . Структура PenTile не является фундаментальным минусом всех панелей AMOLED, но пока характерна для большинства из них. При такой структуре матрица содержит неодинаковое число красных, зеленых и синих субпикселей (у Samsung синих вдвое меньше, у LG – вдвое больше). Основной мотив использования PenTile – желание компенсировать недостатки синих LED. Однако побочным эффектом данного решения становится снижение четкости картинки, особенно заметное в VR-гарнитурах.
.

С учетом всех особенностей обоих типов матриц можно отметить, что IPS с высоким разрешением лучше, если вас интересует VR и нужна максимальная четкость картинки. Ведь у AMOLED комфортному восприятию виртуальной реальности немного препятствует PenTile, и ШИМ подсветки пока нивелирует мгновенную скорость реакции. Также IPS лучше, если вам приходится больше работать со светлыми тонами (веб-серфинг, мессенджеры).

За экранами AMOLED будущее, но пока технология не идеальна. Однако можно смело покупать смартфон со светодиодным экраном, особенно если это флагман. Яркость, контрастность, глубокий черный и экономия энергии при показе темных тонов способны перекрыть все минусы OLED.

Врачи-офтальмологи не устают твердить, что визуальный контакт с экраном гаджета – не лучшее времяпровождение для наших глаз. Какие характеристики экрана смартфона влияют на зрение и что необходимо учитывать при выборе дисплея, расскажем в этом материале.

Медицинский «ликбез» от CHIP

Человеку, который проводит много времени в компании смартфона или любого другого устройства с дисплеем, следует опасаться двух вещей. Первая из них – это сухость глазного яблока, вторая – риск развития близорукости.

В норме мы моргаем около восемнадцати раз в минуту. При такой частоте движения век роговица глаза постоянно увлажняется слезной жидкостью. Глядя в экран, будь то монитор, экран ТВ или дисплей смартфона, мы попросту забываем моргать, из-за чего возникает ощущение сухости и усталости глаз. Ученые подсчитали, что при контакте с экраном частота опускания век снижается до 2-3 раз в минуту – почти в 9 раз!

Защитные очки без диоптрий пригодятся не только хипстерам, но и гаджетофилам

Близорукость, или миопия, вызванная контактом с экраном, бывает истинной и ложной. Сначала возникают спазмы глазных мышц, из-за которых при резком отрыве от экрана окружающая действительность начинает «расплываться». Это так называемая ложная миопия. Если же глазные мышцы постоянно испытывают напряжение, она постепенно нарастает, переходя в близорукость истинную, при которой глазное яблоко немного вытягивается. Тут уже ничего не попишешь – приходится надевать очки.

Каким образом дисплей цифрового устройства так плохо влияет на наши глаза? Есть несколько важных характеристик экрана смартфона, которые определяют, насколько вреден контакт с ним для человеческого зрения.

PPI: количество точек на дюйм

Первая важная с офтальмологической точки зрения характеристика дисплея смартфона – это соотношение между его размером и разрешением, то есть количество точек на дюйм (pixels-per-inch или PPI).

В плане вреда для зрения это соотношение следует рассматривать следующим образом. Маленький экран с высоким разрешением гораздо более безопасен для глаз, чем большой с низким. На маленьком экране с высоким разрешением PPI будет выше, так как пиксели будут располагаться плотнее друг к другу, и картинка будет более четкой.

И наоборот: чем больше экран и ниже разрешение, тем ниже показатель PPI, и тем более размытым становится изображение. Из-за этого наши глаза вынуждены будут напрягаться, самостоятельно подстраивая резкость. Это ведет к вышеупомянутому перенапряжению и спазму мышц, который впоследствии может привести к близорукости.


Если не следить за собой, то очки вскоре станут печальной необходимостью

Если вы хотите выбрать смартфон, который будет более безопасным для глаз, при покупке обратите внимание на размер диагонали экрана (в дюймах) и разрешение (ширина в пикселях и высота в пикселях). Соотношение между ними и будет значением PPI.

Для примера возьмем два экрана с одинаковым разрешением 720×1280 (HD). Первый имеет диагональ 4,3″, и его PPI будет равен 342. Второй с диагональю 4,7″, и его PPI – 312. Несмотря на то, что оба дисплея являются HD-экранами, первый для глаз все-таки безопаснее.

Подсчитать PPI смартфона вашей мечты можно при помощи специальных онлайн-калькуляторов – например, вот такого . А если вам любопытно, насколько вреден для глаз ваш текущий смартфон, можно посетить сайт DPI love , который автоматически определит фактическую диагональ и разрешение экрана и подсчитает ваш показатель PPI.

Яркость и технология подсветки

Человеческий глаз не приспособлен к тому, чтобы долго смотреть на яркий свет. Сколько вы продержитесь, уставившись на лампочку? Смартфоны и другие цифровые гаджеты помещают нас в искусственную обстановку, в которой мы вынуждены долго различать текст и изображения на фоне яркого освещения.

Именно это является причиной неестественной реакции организма: мы перестаем моргать. Глазное яблоко не смачивается достаточным количеством слезной жидкости, и в глазах возникает сухость, напряжение, ощущение «песка». Все в совокупности называется специальным медицинским термином – «синдром сухого глаза».

Здесь действует следующее правило: чем ярче и резче свет, тем вреднее он для глаз. Первый параметр зависит от того, насколько ярко светит экран по отношению к окружающей обстановке (читать с экрана ночью в темноте – определенно вредно), но это можно подкорректировать в настройках смартфона. Второй больше зависит от типа дисплея и использующейся в нем технологии подсветки.


От солнца мы защищаемся темными очками, а от подсветки — почему-то ничем

Более старые дисплеи семейства LCD используют технологию постоянной подсветки. Жидкие кристаллы, составляющие основу таких дисплеев, подсвечиваются изнутри, за счет чего и формируется изображение. В зависимости от подвида дисплея, подсветка может быть более яркой или более приглушенной. Так, более дешевые дисплеи LCD-TFT тусклее, чем более продвинутые LCD-IPS, в которых применяется усиленная подсветка. Тем не менее, эффект здесь один и тот же: глаза постоянно подвергаются воздействию яркого света.

Более современные OLED-дисплеи в этом плане менее вредоносны, так как подсветка в них выборочная. Фактически, OLED-дисплей «всегда выключен», а светодиоды, составляющие основу экрана, загораются в зависимости от того, где и что нужно отобразить. Соответственно, световое воздействие этих экранов куда ниже, чем у предшественников, а свет намного мягче и безвреднее для глаз.

В целом, можно сказать, что четко ранжировать смартфоны по безвредности для глаз при всем желании не получится. Нельзя с уверенностью утверждать, что смартфон не портит зрение только потому, что он имеет разрешение Ultra HD или использует технологию Super AMOLED. Оценивать то, насколько экран подходит для ваших глаз, нужно исходя из комплекса факторов, и в первую очередь – из соображений собственного комфорта.

В последнее время, появилось множество аббревиатур для обозначения типов дисплеев мобильных устройств, что в свою очередь нередко усложняет задачу выбора типа дисплея при покупке мобильного телефона. В данной статье мы попытаемся разобраться какие же бывают типы экранов для мобильных устройств, чтобы помоч определиться с выбором экрана телефона.

В настоящее время из наиболее распространенных технологий можно выделить всего две, это экраны на основе LCD (ЖК дисплеи) и OLED (дисплеи на органических полупроводниках). Главное отличие от LCD - нет ламп подсветки, в OLED дисплеях светятся непосредственно элементы поверхности.

Итак, рассмотрим дисплеи каждой технологии в отдельности.

LCD (liquid cristal display) , то есть дисплеи на основе жидких кристаллов (ЖК). Жидкие кристаллы, как и твердые имеют строго определенную структуру кристаллической решетки и прозрачны для света. Но, в отличие от других кристаллов, жидкие могут изменять структуру под внешним воздействием (электрического тока или температуры), закручиваться, становясь при этом непрозрачными. Управляя током, можно создавать на экране надписи или картинки. Но стоит отметить что LCD дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки их обязательный атрибут. Из-за сокращения габаритов лампа обычно находится с боку, а напротив нее зеркало, поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям.

LCD-дисплеи также делятся на два вида: активные и пассивные . К пассивным матрицам относятся STN (Super Twisted Nematic) , это технология скрученных кристаллов. Этот тип матриц называется пассивным, поскольку он не способен достаточно быстро отображать информацию из-за большой электрической емкости ячеек, напряжение на них не может изменяться достаточно быстро, поэтому картинка обновляется медленно. Как правило, STN дисплеи имеют меньшее разрешение, и отображают значительно меньшее количество цветов. Также из недостатков этих матриц можно отметить маленький угол обзора экрана и плохую видимость при ярком солнечном свете. А из достоинств данного типа дисплеев можно отметить достаточно малый расход энергии и небольшую стоимость, поэтому они активно используются в недорогих телефонах.

CSTN (Color Super Twist Nematic) - это более продвинутая STN технология. Первые CSTN-дисплеи имели большое время отклика. В настоящее же время дисплеи с CSTN-матрицами предоставляют меньшее время отклика, широкий угол видимости и высококачественные цвета, почти не уступающие TFT экранам.

FSTN (Film Super Twisted Nematic) - также более продвинутая STN технология, отличается только тем, что у FSTN-матриц с внешней стороны есть специальная пленка, которая позволяет компенсировать цветовые сдвиги, т.е. это матрица с пленочной компенсацией, которая позволяет улучшить угол обзора, но время отклика все также велико.

DSTN (Dual Super Twisted Nematic) - усовершенствованная STN технология. В такой матрице одна двухслойная ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в «запертом» состоянии, теряет значительно большую часть своей энергии. Контрастность и разрешающая способность DSTN матриц достаточно высокая.

Также к пассивным матрицам относится собственная технология Samsung UFB (Ultra Fine and Bright). Дисплеи созданные по этой технологии обладают повышенной яркостью и контрастностью (способны отображать 262 тысячи цветов), при этом потребляемая мощность снижена по сравнению с традиционными LCD, а также себестоимость их производства не велика.

К активным матрицам относятся TFT (Thin Film Transistors) - тип ЖК дисплея, в активной матрице которого, используются тонкоплёночные прозрачные транзисторы. то есть под поверхностью экрана располагается слой тонкопленочных транзисторов, каждый из которых управляет одной точкой экрана. Таким образом, в цветном дисплее телефона их количество может достигать нескольких десятков, а то и сотен тысяч.

Принцип работы TFT-матрицы заключается в управлении интенсивностью светового потока с помощью его поляризации. Изменение вектора поляризации осуществляют жидкие кристаллы в зависимости от приложенного к ним электрического поля. На каждый пиксель приходится по три транзистора, каждый из которых соответствует одному из трех RGB цветов и конденсатор, поддерживающий необходимое напряжение.

TFT матрицы ускорили работу дисплея, но остались и проблемы, такие как цветопередача, углы обзора, а также битые пиксели - когда выходит из строя транзистор. Для борьбы с искажением цветов при изменении обзора по вертикали было разработано два метода: MVA (Multi Domain Alignment) - т.е. в данном методе рабочую ячейку разбили на две зоны которые управляются одновременно, но ЖК в кажой из них ориентированы по разному. Но проблема всеравно решилась не полностью, метод поворота ЖК в одной плоскости IPS (In-Plane Switching) оказался более удачным в плане общей цветопередачи и в особенности, в отображении тёмных тонов. В данном методе управляющие электроды разместили на одной поверхности таким образом, что силовые линии возникающего электрического поля принимают горизонтальную форму. При подаче управляющего напряжения ЖК разворачиваются в одной плоскости. Запертая ячейка IPS-панели пропускает значительно меньше света, чем ячейка MVA, а общая передаточная характеристика выглядит более плавно и без провалов. Дальнейшее совершенствование этой технологий породило семейство S-IPS, SFT, A-SFT и SA-SFT.

TFD (Thin Film Diode) - технология производства ЖК-дисплеев с использованием тонкопленочных диодов. Она аналогична технологии TFT, но здесь транзисторы заменены тонкопленочными управляющими диодами. Основной особенностью таких дисплеев является пониженное энергопотребление.

LTPS (Low Temperature Poly Silicon) - технология производства LCD TFT-дисплеев с использованием низкотемпературного поликристаллического кремния. Т.е. данная технология позволяет разместить на стекле дисплея большое число транзисторов из кристаллов кремния, который подвергают для этого большой температуре (лазерный отжиг). Данная технология обеспечивает повышенную яркость изображения и пониженное энергопотребление.

Постепенно теснить LCD-экраны стала новая технология OLED (Organic Light Emitting Diodes) т.е. дисплеи на органических светоизлучающих полупроводниках. Главное отличие от LCD-экранов не нужны лампы подсветки, в новых дисплеях светятся непосредственно элементы поверхности. И светятся в десятки раз ярче, чем ЖК-экраны, при этом потребляя гораздо меньше электроэнергии, а также обеспечивают хорошую цветопередачу, высокую контрастность и большой угол обзора (до 180 градусов). Из недостатков можно отметить относительно низкое время жизни, хотя для телефона вполне достаточно.

OLED-дисплей представляет собой цельное устройство, состоящее из нескольких очень тонких органических пленок, заключенных между двумя проводниками. Подача на эти проводники небольшого напряжения (порядка 2-8 вольт) и заставляет дисплей излучать свет. Основу OLED-матрицы составляют полимерные материалы. В настоящее время в основном развиваются две технологии, показавшие наибольшую эффективность и отличающиеся используемыми органическими материалами, это полимеры (PLED) и микромолекулы (sm-OLED).

Технология органических дисплеев лишена большинства недостатков, характерных для ЖК-дисплеев, и обеспечивает гораздо лучшие характеристики изображения. Из достоинств можно отметить высокую яркость и контрастность, компактность и легкость, толщина дисплея не превышает 1 мм, механическая прочностью, и даже гибкость, а также в отличие от существующих TFT и STN дисплеев, OLED-дисплеи потребляют заметно меньше энергии. Из недостатков OLED-дисплеев это высокая стоимость.

Существующие модели, как и в случае с ЖКИ, разделяются по типу управляющей матрицы. Есть OLED с пассивными, а есть и с активными матрицами (TFT). Принцип работы матрицы такой же, но вместо слоя жидких кристаллов используется слой органических полупроводников. TFT OLED - одни из самых быстрых, обеспечивают просто потрясающую картинку, и также хорошо показывают при солнечном освещении.

Теперь после рассмотрения основных типов и технологий дисплеев мобильных телефонов, задача выбора телефона упрощается. Так если вам необходим телефон просто для совершения звонков, то стоит рассматривать более дешевые модели на технологии STN, такой телефон будет к тому же меньше потреблять энергии и тем самым его нужно реже заряжать. Если же вам нужен не очень дорогой телефон, но с множеством современных функций и хорошим качеством, то стоит присмотреться к телефонам с LCD TFT экраном. Ну а если вы можете себе позволить очень дорогие модели телефонов с сответственно очень высоким качеством изображения для просмотра фото и видео в высоком качестве, то стоит присмотреться к OLED TFT дисплеям, хотя также можно рассмотреть и LCD IPS экраны и т.д.

До массового распространения смартфонов, при покупке телефонов мы оценивали их, главным образом, по дизайну и лишь изредка обращали внимание на функциональные возможности. Времена изменились: теперь все смартфоны имеют примерно одинаковые возможности, а при взгляде только на фронтальную панель, один гаджет едва можно отличить от другого. На передний план вышли технические характеристики устройств, и самой важной среди них для многих является экран. Мы расскажем, что же кроется за терминами TFT, TN, IPS, PLS, и поможем подобрать смартфон с нужными характеристиками экрана.

Типы матриц

В современных смартфонах главным образом применяются три технологии производства матриц: две основаны на жидких кристаллах - TN+film и IPS, а третья - AMOLED - на органических светодиодах. Но прежде чем начать, стоит рассказать об аббревиатуре TFT, являющейся источником множества заблуждений. TFT (thin-film transistor) - это тонкоплёночные транзисторы, которые используются для управления работой каждого субпикселя современных экранов. Технология TFT применяется во всех перечисленных выше типах экранов, включая AMOLED, поэтому, если где-то говорится о сравнении TFT и IPS, то это в корне неверная постановка вопроса.

В большинстве TFT-матриц используется аморфный кремний, но недавно в производство стали внедряться TFT на поликристаллическом кремнии (LTPS-TFT). Главные преимущества новой технологии - уменьшение энергопотребления и размеров транзисторов, что позволяет достигать высоких значений плотности пикселей (более 500 ppi). Одним из первых смартфонов с IPS-дисплеем и матрицей LTPS-TFT стал OnePlus One.

Смартфон OnePlus One

Теперь, когда мы разобрались с TFT, перейдём непосредственно к типам матриц. Несмотря на большое разнообразие разновидностей LCD, все они имеют один и тот же базовый принцип работы: приложенный к молекулам жидких кристаллов ток задаёт угол поляризации света (он влияет на яркость субпикселя). Поляризованный свет затем проходит через светофильтр и окрашивается в цвет соответствующего субпикселя. Первыми в смартфонах появились наиболее простые и дешёвые матрицы TN+film, название которых часто сокращается до TN. Они имеют малые углы обзора (не более 60 градусов при отклонении от вертикали), причём даже при небольших наклонах изображение на экранах с такими матрицами инвертируется. Среди других недостатков TN-матриц - малая контрастность и низкая точность цветопередачи. На сегодняшний день такие экраны используются только в самых дешёвых смартфонах, а подавляющее большинство новых гаджетов имеют уже более совершенные дисплеи.

Наиболее распространённой в мобильных гаджетах сейчас является технология IPS, иногда обозначаемая как SFT. IPS-матрицы появились 20 лет назад и с тех пор выпускались в различных модификациях, число которых приближается к двум десяткам. Тем не менее, выделить среди них стоит те, которые являются наиболее технологичными и активно используются на данный момент: AH-IPS от компании LG и PLS - от компании Samsung, которые весьма близки по своим свойствам, что даже являлось поводом для судебного разбирательства между производителями. Современные модификации IPS имеют широкие углы обзора, которые близки к 180 градусам, реалистичную цветопередачу и обеспечивают возможность создания дисплеев с высокой плотностью пикселей. К сожалению, производители гаджетов практически никогда не сообщают точный тип IPS-матриц, хотя при использовании смартфона различия будут видны невооружённым глазом. Для более дешёвых IPS-матриц характерно выцветание картинки при наклонах экрана, а также невысокая точность цветопередачи: изображение может быть либо слишком «кислотным», либо, напротив, «блёклым».

Что касается энергопотребления, то в жидкокристаллических дисплеях оно по большей части определяется мощностью элементов подсветки (в смартфонах для этих целей используются светодиоды), поэтому потребление матриц TN+film и IPS можно считать примерно одинаковым при совпадающем уровне яркости.

На LCD совершенно не похожи матрицы, созданные на основе органических светодиодов (OLED). В них источником света служат сами субпиксели, представляющие собой сверхминиатюрные органические светодиоды. Так как нет необходимости во внешней подсветке, такие экраны можно сделать тоньше жидкокристаллических. В смартфонах применяется разновидность технологии OLED - AMOLED, которая использует активную TFT-матрицу для управления субпикселями. Именно это позволяет AMOLED отображать цвета, тогда как обычные панели OLED могут быть только монохромными. AMOLED-матрицы обеспечивают самый глубокий чёрный цвет, поскольку для его «отображения» требуется лишь полностью отключить светодиоды. По сравнению с LCD, такие матрицы обладают более низким энергопотреблением, особенно при использовании тёмных тем оформления, в которых чёрные участки экрана вовсе не потребляют энергию. Другая характерная особенность AMOLED - слишком насыщенные цвета. На заре своего появления такие матрицы действительно имели неправдоподобную цветопередачу, и, хотя подобные «детские болячки» давно в прошлом, до сих пор большинство смартфонов с такими экранами имеют встроенную настройку насыщенности, которая позволяет приблизить изображение на AMOLED по восприятию к IPS-экранам.

Другим ограничением AMOLED экранов раньше являлся неодинаковый срок службы светодиодов различных цветов. Через пару лет использования смартфона это могло привести к выгоранию субпикселей и остаточному изображению некоторых элементов интерфейса, в первую очередь - на панели уведомлений. Но, как и в случае с цветопередачей, эта проблема давно ушла в прошлое, и современные органические светодиоды рассчитаны минимум на три года беспрерывной работы.

Подведём краткий итог. Наиболее качественное и яркое изображение на данный момент беспечивают AMOLED-матрицы: даже Apple, по слухам, в одном из следующих iPhone будет использовать такие дисплеи. Но, стоит учитывать, что все новейшие разработки компания Samsung, как основной производитель таких панелей, оставляет себе, а другим производителям продаёт «прошлогодние» матрицы. Поэтому, при выборе смартфона не от Samsung стоит смотреть в сторону качественных IPS-экранов. А вот гаджеты с дисплеями TN+film выбирать ни в коем случае не стоит - сегодня эта технология уже считается устаревшей.

На восприятие изображения на экране может влиять не только технология матрицы, но и рисунок субпикселей. Впрочем, с LCD всё довольно просто: в них каждый RGB-пиксель состоит из трёх вытянутых субпикселей, которые, в зависимости от модификации технологии, могут иметь форму прямоугольника или «галочки».

В AMOLED-экранах всё интереснее. Поскольку в таких матрицах источниками света являются сами субпиксели, а человеческий глаз более чувствителен к чистому зелёному свету, чем к чистому красному или синему, использование в AMOLED того же рисунка, что и в IPS, ухудшило бы цветопередачу и сделало картинку нереалистичной. Попыткой решить эту проблему стала первая версия технологии PenTile, в которой использовались пиксели двух типов: RG (красный-зелёный) и BG (синий-зелёный), состоящие из двух субпикселей соответствующих цветов. Причём, если красные и синие субпиксели имели форму, близкую к квадратам, то зелёные больше напоминали сильно вытянутые прямоугольники. Недостатками такого рисунка были «грязный» белый цвет, зазубренные края на стыке разных цветов, а при низком ppi - четко видимая сетка подложки субпикселей, появляющаяся из-за слишком большого расстояния между ними. К тому же, разрешение, указываемое в характеристиках таких устройств, было «нечестным»: если IPS HD матрица имеет 2764800 субпикселей, то AMOLED HD матрица - всего 1843200, что приводило к видимой невооружённым глазом разнице в чёткости IPS- и AMOLED-матриц с, казалось бы, одинаковой плотностью пикселей. Последним флагманским смартфоном с такой AMOLED матрицей стал Samsung Galaxy S III.

В смартпэде Galaxy Note II южнокорейская компания сделала попытку отказа от PenTile: экран устройства имел полноценные RBG-пиксели, хотя и с необычным расположением субпикселей. Тем не менее, по неясным причинам, в дальнейшем Samsung от такого рисунка отказалась - возможно, производитель столкнулся с проблемой дальнейшего увеличения ppi.

В своих современных экранах Samsung вернулась к RG-BG пикселям с использованием нового типа рисунка, который был назван Diamond PenTile. Новая технология позволила сделать белый цвет более натуральным, а что касается зазубренных краёв (например, вокруг белого объекта на чёрном фоне были чётко видны отдельные красные субпиксели), то эта проблема была решена ещё проще - увеличением ppi до такой степени, что неровности перестали быть заметны. Diamond PenTile используется во всех флагманах Samsung начиная с модели Galaxy S4.

В завершении этого раздела стоит сказать ещё об одном рисунке AMOLED-матриц - PenTile RGBW, который получается добавлением к трём основным субпикселям четвёртого, белого. До появления Diamond PenTile такой рисунок был единственным рецептом чистого белого цвета, но он так и не получил широкого распространения - одним из последних мобильных гаджетов с PenTile RGBW стал планшет Galaxy Note 10.1 2014. Сейчас AMOLED-матрицы с RGBW-пикселями применяются в телевизорах, поскольку в них не требуется высокий показатель ppi. Справедливости ради, также упомянем, что RGBW-пиксели могут использоваться и в LCD, но примеры использования таких матриц в смартфонах нам не известны.

В отличие от AMOLED, качественные IPS-матрицы никогда не испытывали проблем в качестве, связанных с рисунком субпикселей. Тем не менее, технология Diamond PenTile, вместе с высокой плотностью пикселей, позволила AMOLED догнать и обогнать IPS. Поэтому, если вы выбираете гаджеты придирчиво, не стоит покупать смартфон с экраном AMOLED, у которого плотность пикселей менее 300 ppi. При более высокой плотности никакие дефекты заметны не будут.

Конструктивные особенности

На одних только технологиях формирования изображений разнообразие дисплеев современных мобильных гаджетов не заканчивается. Одна из первых вещей, за которую взялись производители - воздушная прослойка между проекционно-ёмкостным сенсором и непосредственно дисплеем. Так появилась технология OGS, объединяющая сенсор и матрицу в один стеклянный пакет в виде сэндвича. Это дало значительный рывок по качеству изображения: увеличилась максимальная яркость и углы обзора, была улучшена цветопередача. Само собой, толщина всего пакета также была уменьшена, что позволило создать более тонкие смартфоны. Увы, но недостатки у технологии тоже есть: теперь, если вы разбили стекло, поменять его отдельно от дисплея практически нереально. Но преимущества в качестве всё же оказались важнее и теперь не-OGS экраны можно встретить разве что в самых дешёвых аппаратах.

Популярными в последнее время стали и эксперименты с формой стекла. И начались они не недавно, а как минимум в 2011 году: HTC Sensation имел вогнутое в центре стекло, которое, по замыслу производителя, должно было защитить экран от царапин. Но на качественно новый уровень такие стёкла вышли с появлением «2.5D экранов» с загнутым по краям стеклом, что создаёт ощущение «бесконечного» экрана и делает грани смартфонов более гладкими. Такие стёкла в своих гаджетах активно использует компания Apple, и в последнее время они становятся всё более и более популярными.

Логичным шагом в том же направлении стало изгибание не только стекла, но и самого дисплея, что стало возможным при использовании полимерных подложек вместо стеклянных. Тут пальма первенства, конечно, принадлежит компании Samsung с её смартфоном Galaxy Note Edge, в котором была изогнута одна из боковых граней экрана.

Другой способ предложила компания LG, которая сумела изогнуть не только дисплей, но и весь смартфон по его короткой стороне. Однако LG G Flex и его преемник не завоевали популярности, после чего производитель отказался от дальнейшего выпуска подобных аппаратов.

Также некоторые компании стараются улучшить взаимодействие человека с экраном, работая над его сенсорной частью. Например, некоторые устройства оснащаются сенсорами с повышенной чувствительностью, которые позволяют работать с ними даже в перчатках, а другие экраны получают индуктивную подложку для поддержки стилусов. Первая технология активно используется компаниями Samsung и Microsoft (бывшая Nokia), а вторая - Samsung, Microsoft и Apple.

Будущее экранов

Не стоит думать, что современные дисплеи в смартфонах достигли высшей точки своего развития: технологиям ещё есть куда расти. Одними из самых перспективных являются дисплеи на квантовых точках (QLED). Квантовая точка - это микроскопический кусочек полупроводника, в котором существенную роль начинают играть квантовые эффекты. Упрощенно процесс излучения выглядит так: воздействие слабого электрического тока заставляет электроны квантовых точек изменять энергию, излучая при этом свет. Частота излучаемого света зависит от размера и материала точек, благодаря чему можно добиться практически любого цвета в видимом диапазоне. Учёные обещают, что QLED матрицы будут иметь лучшую цветопередачу, контрастность, более высокую яркость и низкое энергопотребление. Частично технология экранов на квантовых точках используется в экранах телевизоров Sony, а прототипы имеются у LG и Philips, но о массовом применении таких дисплеев в телевизорах или смартфонах речи пока не идёт.

Высока вероятность и того, что в ближайшем будущем мы увидим в смартфонах не просто изогнутые, но и полностью гибкие, дисплеи. Тем более, что почти готовые к массовому производству прототипы таких AMOLED матриц существуют уже пару лет. Ограничением же выступает электроника смартфона, которую гибкой сделать пока невозможно. С другой стороны, крупные компании могут изменить саму концепцию смартфона, выпустив что-то вроде гаджета, показанного на фотографии ниже - нам остаётся только ждать, ведь развитие технологий происходит прямо на наших глазах.